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ABSTRACT
Background  National-level coverage estimates of 
maternal and child health (MCH) services mask district-
level and community-level geographical inequities. The 
purpose of this study is to estimate grid-level coverage of 
essential MCH services in Nigeria using machine learning 
techniques.
Methods  Essential MCH services in this study included 
antenatal care, facility-based delivery, childhood 
vaccinations and treatments of childhood illnesses. 
We estimated generalised additive models (GAMs) and 
gradient boosting regressions (GB) for each essential 
MCH service using data from five national representative 
cross-sectional surveys in Nigeria from 2003 to 2018 and 
geospatial socioeconomic, environmental and physical 
characteristics. Using the best-performed model for each 
service, we map predicted coverage at 1 km2 and 5 km2 
spatial resolutions in urban and rural areas, respectively.
Results  GAMs consistently outperformed GB models 
across a range of essential MCH services, demonstrating 
low systematic prediction errors. High-resolution maps 
revealed stark geographic disparities in MCH service 
coverage, especially between rural and urban areas and 
among different states and service types. Temporal trends 
indicated an overall increase in MCH service coverage 
from 2003 to 2018, although with variations by service 
type and location. Priority areas with lower coverage of 
both maternal and vaccination services were identified, 
mostly located in the northern parts of Nigeria.
Conclusion  High-resolution spatial estimates can guide 
geographic prioritisation and help develop better strategies 
for implementation plans, allowing limited resources to be 
targeted to areas with lower coverage of essential MCH 
services.

BACKGROUND
National and subnational coverage of essen-
tial maternal and child health (MCH) services 
in low/middle-income countries (LMICs) are 
typically estimated using nationally repre-
sentative cross-sectional surveys, including 
Demographic and Health Surveys (DHS) and 
Multiple Indicator Cluster Surveys (MICS). 

Because these surveys are generally designed 
to produce estimates at the national and 
subnational levels (eg, administrative level 
1) exclusively, these estimates can mask 
district-level and community-level inequities 
in service coverage. As a result, it can be diffi-
cult for policymakers to identify underserved 
geographic locations and prioritise interven-
tions that match each community’s context 
and needs.

Although estimates of essential MCH 
service coverage are rarely available at the 
lowest administrative level in LMICs, several 
earlier studies reported service coverage of 
diphtheria-tetanus-pertussis (DTP) vaccina-
tion, measles vaccinations and contracep-
tive use at subdistrict or community levels 
in LMICs.1–4 Prevalence rates of HIV5 and 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This study used representative data from five na-
tional household surveys conducted in Nigeria from 
2003 to 2018, including over 150 000 households.

	⇒ Health service coverage of 10 essential maternal 
and child health services were estimated under the 
best-performing model with a wide range of geo-
spatial data.

	⇒ We compared gradient boosting models and gener-
alised additive models for predicting health service 
coverage by assessing four performance criteria: 
weighted root-mean-squared error, mean bias error, 
mean squared error and nominal coverage of 95% 
prediction intervals.

	⇒ Our modelling approach can be applicable to other 
countries with similar household survey datasets 
and health services which are associated with geo-
spatial data.

	⇒ However, our approach is less applicable for health 
services like treatments of childhood illnesses, 
which are more associated with individual and con-
textual factors.
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Plasmodium falciparum6 were also estimated at the subna-
tional level in some LMICs. Finally, the DHS Programme 
Map Surfaces provides grid-level estimates of coverage 
for multiple health service estimated using a Bayesian 
geostatistical approach with a standardised set of covari-
ates across countries.7 8 However, these studies focus 
only on a single survey or a single indicator, whereas 
studies combining data from multiple surveys to investi-
gate multiple indicators over time are lacking. The DHS 
Programme Map Surfaces reports recommend the use of 
additional geospatial covariates and integrated data from 
multiple surveys to further improve their methodologies 
and monitor progress towards universal health coverage 
(UHC) at subnational level.7

Nigeria has the highest population and GDP in Africa. 
However, a high burden of maternal and child mortality 
in Nigeria significantly contributes to global maternal 
and child deaths.9 Previous surveys and studies identified 
noticeable disparities in health outcomes and disease 
burden across regions in Nigeria.10 11 Also, its diverse 
sociocultural and economic characteristics influences 
health-seeking behaviours and service utilisation differ-
ently across states and lower administrative areas,2 12–14 
necessitating a granular analysis.

There is a critical need for district-level and community-
level data on coverage of essential MCH services, so that 
countries may effectively target interventions, including 
new health facilities and outreach services, to communi-
ties with low coverage of multiple MCH services. There-
fore, this study is aimed at estimating grid-level coverage of 
essential MCH services (ie, antenatal care (ANC), facility-
based deliveries, childhood vaccinations and treatments 
of childhood illnesses) in Nigeria using machine learning 
methods. We further compare the prediction precision 
of two machine learning techniques, generalised additive 
models (GAMs) and gradient boosting (GB). We then use 
these methods to create high-resolution maps to visualise 
inequities in MCH service coverage across specific loca-
tions in Nigeria.

METHODS
Survey data in Nigeria
This study uses data from five nationally representative 
cross-sectional surveys administered in Nigeria between 
2003 and 2018 that include geolocation data of primary 
sampling units (PSUs): DHS 2003, DHS 2008, DHS 
2013, DHS 2018 and MICS 2016–2017. DHS data were 
extracted from IPUMS DHS.15 Methodological details 
on the conduct of these five surveys is published else-
where.10 16–19 All five surveys employed stratified two-
stage or three-stage cluster sampling. Each PSU for DHS 
2003 was composed of one or more enumeration areas 
(EAs) developed for the 1991 Population Census. PSUs 
for other DHS and MICS from 2016 to 2017 consisted 
of one or more EAs developed for the Population and 
Household Census 2006. MICS 2016–2017 excluded 101 
PSUs located in Borno, Yobe and Adamawa States due 

to insecurity in those regions. For the same reason, DHS 
2018 excluded 11 of 27 local government areas (LGAs) in 
Borno State.

To protect confidentiality of personal geoinformation, 
the public versions of all five surveys’ data randomly 
displaced Global Positioning System coordinates of the 
locations of respondents’ PSUs. Geolocations of urban 
PSUs were randomly displaced within 2 km buffers, 
whereas rural PSUs were displaced within either 5 km 
buffers in 99% of cases or 10 km buffers in 1% of cases. 
The direction and distance of displacement for each 
household was randomly determined.20 21 A previous 
study reported that errors in direction and distance due to 
random household displacement were sufficiently negli-
gible to estimate measles vaccination coverage in a 10 
km2 grid.22 Geolocation data for 16 of 3533 PSUs (0.5%) 
were missing across the four DHSs. Similarly, geoloca-
tion data for 1 of 2239 PSUs (0.0004%) was missing in 
MICS 2016/2017. After initial random displacement, 14 
PSUs (1 in DHS 2008 and 13 in MICS 2016/2017) were 
‘located’ either in the sea or outside country bound-
aries. We resampled those PSUs by conducting random 
displacement again within 5 km until they were within 
Nigeria’s land boundaries. If there was no appropriate 
point within 5 km from the original PSUs’ locations, we 
resampled those PSUs within 10 km. Of these 14 PSUs, 8 
were successfully resampled, and 6 cases that could not 
be appropriately displaced across 10 000 attempts were 
discarded. Online supplemental file 1 shows the locations 
of PSUs with at least one target population for ANC and 
facility-based delivery.

Essential MCH services
Ten essential MCH services were included in this study: 
(1) ANC; (2) facility-based delivery; (3–8) childhood 
vaccinations (BCG, first and third DTP/pentavalent 
(Penta) and oral polio (OPV), and first dose of measles); 
and (9 and 10) treatments of childhood illnesses for 
fever/cough and diarrhoea. The definitions and study 
population of essential services are shown in table 1. The 
target population for ANC and facility-based delivery are 
women 15–49 years of age having given a live birth during 
the last 23 months. Children 12–23 months of age are the 
study population for childhood vaccinations.

The outcome variables for this study are the grid-level 
utilisation rates for each essential MCH service. First, we 
created a map with 1 km×1 km cells in urban areas and 5 
km×5 km cells in rural areas. In this study, we employed a 
grid cell-based approach to classify urban and rural areas, 
adhering to the harmonised definition by Dijkstra and 
Poelman.23 Urban areas were defined as grid cells with a 
population density of at least 300 inhabitants per km2 and 
a total population exceeding 5000, ensuring a consistent 
classification across Nigeria. Grid cells not meeting these 
criteria were classified as rural. To accurately capture 
the heterogeneous nature of urban areas and manage 
computational efficiency across Nigeria’s vast landscapes, 
we differentiated spatial resolutions: 1 km×1 km cells 
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were used for urban areas to detail the high variability in 
population distribution and access to services, whereas 5 
km×5 km cells were applied in rural areas, balancing the 
need for detailed analysis and computational feasibility.

For each essential MCH service, survey year and grid 
cell, we constructed a utilisation rate using the count 
of children 12–23 months of age or women 15–49 years 
of age who used that service as the numerator, and the 
number of individuals categorised into the study popula-
tion, children 12–23 months of age or women 15–49 years 
of age depending on the indicator, as the denominator.

Covariate data
Several earlier studies found geospatial socioeconomic, 
environmental and physical factors to be associated with 
the spatial distribution of under-five mortality cases and 
geographical heterogeneity in MCH service coverage.2 24 25 
Table 2 shows the geospatial covariates employed in this 
study, except for longitude and latitude. Household 
poverty and female and male education attainment by grid 
cell were extracted from high-resolution data published 
in earlier studies.26 27 Population density and total popu-
lation data were extracted from the WorldPop database.28 
Road density data were extracted from the Global Roads 
Inventory Project.29 Meteorological data such as precip-
itation and evapotranspiration and nighttime light data 
were extracted from TerraClimate30 and High Resolution 
Electricity Access.31 We also created three spatial covari-
ates: (1) travel time to the most accessible health facility; 
(2) travel time to the nearest city; and (3) the number 
of major roads crossing the household’s grid cell. Travel 
time to the most accessible health facility was estimated 
by using the geolocations of health facilities run by state 
governments, community-based organisations and faith-
based organisations in Nigeria32 with the friction surface 
developed by Malaria Atlas Project.33 Similarly, travel time 

to the nearest city was estimated by using geolocational 
data of cities, extracted from OpenStreetMap and the 
same friction surface.34 We counted the number of major 
roads, such as primary, secondary and tertiary roads, 
motorway, and track grade 1, 2 and 3, in each cell using 
OpenStreetMap. In addition, we used high-resolution 
spatial data on the prevalence of P. falciparum malaria, 
lower respiratory infections and childhood diarrhoeal 
morbidity6 35 36 as disease-related covariates.

Prediction modelling and high-resolution map creation
We compared the prediction performances of two models, 
GAMs and GB models, using a pooled dataset of five 
nationally representative cross-sectional surveys. These 
models are described in the Prediction models section. 
For each service, we identify the best prediction model 
based on each model’s performance on four indicators 
described in the section of Model performance indica-
tors and selection of final models. Finally, we create high-
resolution coverage maps for each essential MCH service 
using the best prediction model for that service. We also 
estimated the aggregated service coverage at various 
administrative levels and in rural and urban areas. The 
High-resolution map creation section provides methods 
of creating high-resolution maps and estimating aggre-
gated service coverage.

Prediction models: GAMs and GB models
We consider two modelling strategies from machine 
learning—GAMs and GB models—for predicting essen-
tial MCH service coverage. Both models rely on the same 
set of covariates but employ different estimation tech-
niques: GAMs emphasise non-parametric estimation of 
flexible functional forms, whereas GB involves prediction 
from a weighed ensemble of sequentially constructed 
models, each of which attempts to better predict cases 

Table 1  Definitions and target populations of essential health services

Health service Definition Target population

Four or more antenatal care visits Antenatal care four or more times by trained health 
personnel (ie, doctor, nurse, midwife, auxiliary 
midwife) during pregnancy at the point of survey

Women aged 15–49 years with a 
last birth in the last 23 months

Facility-based delivery Delivery at public or private health facility in the last 
23 months at the point of survey

Women aged 15–49 years with live 
births in the last 23 months

Childhood immunisation Children who had received one dose of BCG 
vaccine

Children aged 12–23 months

Children who had received first and third dose of 
diphtheria-tetanus-pertussis vaccine or pentavalent 
vaccine

Children who had received first and third dose of 
oral polio vaccine

Children who had received first dose of measles 
vaccine

Treatment for common childhood 
illness

Children under five with fever/cough and diarrhoea 
in the last 2 weeks for whom care was sought at a 
health facility

Children aged 0–59 months
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that were poorly predicted by the previous model in the 
sequence.

Generalised additive models
We estimated grid-level quasi-binomial GAMs for each 
essential MCH service using the mgcv package in R.37 
The functional form of the models allows for non-linear 
relationships between the outcome and covariates, and is 
given by:

	﻿‍
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yijt represents the number of eligible individuals using 
essential MCH services in the ith grid of the jth state in 
year t. Popijt indicates the number of eligible individ-
uals in the ith grid of the jth state in year t. Urbanij is a 
binary indicator for whether the ith grid of the jth state 
is urban or rural. Stateij is a vector of dummy variables 
indicating states of Nigeria. s(year) is a two-dimensional 
thin plate regression spline of years. s(lat, long) is an 
isotropic smooth of latitude and longitude on the sphere 
with second derivative penalty.37 In all other cases, s(·) 
indicates a cubic spline smoothing function of the given 
covariate.

Povertyij denotes the estimated proportion of people 
living in poverty, defined as living on less than US$1.25 a 
day, in the ith cluster of the jth state. Female_eduijt and 
Male_eduijt represent mean educational attainment 
among females and males aged 15–49 years in the ith 
cluster of the jth state in year t, respectively. Pop_denijt 
and Pop_totalijt represent population density and total 
population in the ith cluster of the jth state in year t. No_
roadij and Road_denij denote the number of main roads 
crossing and total road density in the ith cluster of the jth 
state. Time_cityij and Time_HFij denote time to the most 
accessible health facility and city in the ith cluster of the 
jth state. Rainijt, Dryijt and Lightijt represent cumulative 
precipitation, cumulative evapotranspiration and annual 
composite nighttime light, respectively, in the ith cluster 
of the jth state in year t. Malariaijt, LRIijt and Diarrhoeaijt 
represent prevalence of P. falciparum malaria, lower respi-
ratory infections and diarrhoea in the ith cluster of the 
jth state in year t.

We employed a shrinkage approach to smoothing func-
tions in the GAM model with all covariates, since the 
best-subset selection approach was not computationally 
feasible. A simulation study found that the shrinkage 
approach performed better in terms of predictive ability 
than other methods, such as backward selection.38

Gradient boosting
We also estimated GB regression models for each essential 
MCH service using the XGBoost package in R.39 We used 
the same set of the covariates as listed in the Covariate 

data section, and assumed service coverage outcomes 
followed the Tweedie distribution. We tested a sequence 
of variance power between 1 and 2 by running iterative 
models and selected the best power based on the negative 
log-likelihood. Moreover, we conducted a grid search to 
select the best set of hyper-parameters based on negative 
log-likelihood for Tweedie regression. In the grid search, 
we tested the following parameters and their ranges: 
(1) the maximum depth of a tree, 2–10 by increments 
of 2; (2) the minimum sum of instance weight needed 
in a child, 1–3 by increments of 0.5; (3) the subsample 
ratio of columns when constructing each tree, 0.5–1.0 by 
increments of 0.1; (4) the subsample ratio of the training 
instances, 0.5–1.0 by increments of 0.1; and (5) step size 
shrinkage used in update to prevent overfitting, 0.01–0.3 
(specifically, we tested 0.01–0.1 by increments of 0.01, as 
well as 0.2 and 0.3).

Model performance indicators and selection of final models
We compared the performance of the GAM and GB 
models for each MCH service on four performance 
criteria, each of which was computing using 5-fold 
cross-validation:

weighted root-mean-squared error (WRMSE) of 
proportions of essential MCH service utilisations,

‍
WRMSE =

∑
(
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/
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)

‍
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mean bias error,
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mean squared error,
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; and

nominal coverage of 95% prediction intervals,

‍
nCoverage = 100 ×

n∑
i=1

I
(
li ≤ ŷi) ≤ ui

)
/n

‍
.

Pi and ‍Pi ‍ denote observed and predicted proportions 
at cluster i, di is the size of the study population at cluster 
i, and n is the count of cluster locations with non-zero 
study populations. ‍li ‍ and ‍ui ‍ are the lower and upper 
limits of the prediction interval and I(・) is an indicator 
function. Nominal coverage indicates the proportion of 
the estimated numbers of study population having used 
essential maternal and child services (‍yi ‍) within 95% CIs 
of predicted services coverage. Due to erratic behaviour 
around the endpoints (ie, 0 and 1) using binomial proba-
bilities,40 whenever observed values were exactly 0 or 1, we 
set the estimated lower and upper CIs in GAMs to either 
0 or 1, respectively. We employed methods employed in 
an earlier study on cluster-level estimates of measles vacci-
nations2 to calculate the nominal coverage of 95% predic-
tion intervals.

To determine a final model for each MCH service, 
we first checked whether either the GAM or GB model 
was dominant on all the four measures of goodness of 
fit. If either model was uniformly superior on these four 
metrics, we selected it as the prediction model for the 
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service. When the results of the four metrics disagreed 
on the best model, we further examined whether one of 
the models had WRMSE at least 0.01 units lower, MSE at 
least 0.005 units lower, MBE at least 0.01 units lower, or 
nCoverage at least 1% closer to 95%. Whichever model 
met a greater number of these criteria than the others was 
selected as the prediction model for that service. There 
was no case that both the GAM and GB model met the 
same number of these criteria.

High-resolution map creation
Using the best predicting model, either GAM or GB, 
for each service, we created high-resolution coverage 
maps for essential MCH services from 2003 to 2018. We 
also computed 95% CIs of predicted grid-level service 
coverage using the estimated SE for each predicted value 
for GAMs or bootstrapped SEs for GB models. In addition, 
to ensure the logical sequence of vaccine coverage across 
vaccination doses, we checked the number of grids that 
have a higher coverage for a subsequent dose (Penta3/
OPV3) than that for an initial dose (Penta1/OPV1). We 
have not found such grids over years.

We estimated aggregate predicted proportions aggre-
gated at various administrative levels by calculating 
weighted mean values and using as weights in each grid 
location the proxy target population from WorldPop.28 
For ANC and facility-based delivery, we used the sum of 
the number of children 0–12 months of age in the year 
of estimation and in the prior year as a proxy for the 
number of women 15–49 years of age with a live birth 
during the last 23 months. For childhood vaccinations, 
we used the total number of children 0–12 months of age 
in the prior year as a proxy for the number of children 
aged 12–23 months. To estimate gaps in MCH service 
coverage between rural and urban areas over time, the 
difference-in-difference (DiD) estimator for each essen-
tial MCH service was calculated by taking the difference 
in an MCH service coverage of urban areas between 2018 
and 2003 and subtracting the difference for rural areas 
between 2018 and 2003. 95% CIs for the DiD estimates 
were computed using bootstrapped SEs. A bivariate 
choropleth map is used to display mean MCH coverage.

Following previous work,35 we treated as missing values 
of MCH service coverage for the grid locations which 
include either lakes or very low population (less than 10 
people per km2). We did not estimate predicted values for 
grid locations lacking covariate data.

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of our research.

RESULTS
Model selection and validation
Online supplemental file 2 reports the performance of the 
GAMs and GB models. Across a range of essential MCH 
services, GAMs matched or outperformed GB models 

based on all four performance indicators, as shown 
in online supplemental file 2. In particular, for ANC, 
facility-based delivery, BCG, first and third Penta, GAMs 
performed better than GB models on all four measures: 
MBEs, MSEs, WRMSEs and nominal 95% coverage. For 
third OPV and measles vaccinations, GAMs outperformed 
GB models in terms of MBE and the nominal coverage, 
while obtaining similar MSEs and WRMSEs. For first OPV, 
GAMs outperformed GB models on MBE, while MSE, 
WRMSE and nominal coverage were similar across both 
approaches. Finally, due to low predictive power and wide 
prediction intervals in both GAM and GB models, we did 
not select final models or create coverage maps for treat-
ments of childhood illnesses.

The final predictive models had uniformly low system-
atic prediction error, with a range of MBE from 0.001 
to 0.016 across 10 essential MCH services. The range of 
MSEs was similarly narrow (0.057–0.068).

To check model fitting, we further compared the 
observed and estimated share of study populations using 
essential MCH services (see online supplemental file 
3a). Also, online supplemental file 3b includes in-sample 
and out-of-sample plots for observed vs predicted prob-
abilities for each essential MCH service. Online supple-
mental file 4 provides plots of smoothed functional forms 
from the GAMs. GB model estimates of the importance 
of each feature for predicting each MCH service based 
are provided in online supplemental file 5. As shown in 
online supplemental file 4, smoothers fitted by the GAMs 
show different slopes by MCH service types. Online 
supplemental file 6 compares high-resolution maps of 
coverage of six essential MCH services based on GAMs 
and GB models.

Geographic inequality in essential MCH service coverage
High-resolution maps of coverage from 2003 to 
2018 of 10 essential MCH services, excepting treat-
ments of childhood illnesses, have been stored in 
Figshare. High-resolution maps of 6 of 10 essential 
MCH services (ANC, facility-based delivery, BCG, first 
Penta, third Penta and measles vaccination) as of 
2018 are shown in figure  1 to highlight geographic 
inequality in service coverage across states and LGAs. 
Overall, MCH service coverage in rural areas was lower 
than urban areas across service types. Likewise, MCH 
service coverage was also lower in northern parts of 
Nigeria, though higher coverage can be found in 
some major cities and towns in those states.

Figure 2 shows LGA-level coverage estimates for 8 of 
10 essential MCH services by state as of 2018. Online 
supplemental file 7 also provides mean, minimum and 
maximum LGA-level coverage of eight essential MCH 
services by state. Overall, the LGA-level inequalities 
of third OPV, third Penta and measles were narrower, 
compared with BCG, first OPV and first Penta. States 
with either high or low service coverage exhibited 
reduced IQRs at the LGA level, suggesting dimin-
ished intra-state disparities. Conversely, states with 
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moderate coverage revealed more substantial IQRs, 
indicative of increased variability in service utilisation 
across LGAs. The three states with the greatest LGA-
level inequality in terms of ANC were Kwara (IQR: 
54.2%–82.6%), Borno (IQR: 16.6%–40.8%) and 
Bayelsa (IQR: 23.4%–46.3%), whereas the top three 
states for LGA-level inequality in BCG vaccination 
were Kaduna (IQR: 53.4%–88.1%), Gombe (IQR: 
45.3%–78.4%) and Borno (IQR: 35.7%–60.4%). 
Overall, we find that Borno, Gombe, Kaduna, Kwara 

and Niger states showed consistently high inequality 
across LGAs, with each of these states ranking among 
the top three states in terms of IQR for at least four 
of eight MCH services. In terms of inequality across 
the 10 MCH services shown in figure  2, we find the 
highest LGA-level IQR for facility-based delivery 
coverage, followed by BCG, first OPV and ANC. The 
LGA-level IQR for measles vaccination was the lowest 
of the eight services, although its mean coverage was 
the lowest, as well.

Figure 1  Predicted service coverage of (A) antenatal care, (B) facility-based delivery, (C) BCG vaccination, (D), first pentavalent 
vaccination, (E) third pentavalent vaccination and (F) measles vaccination in 2018.

Figure 2  Predicted local government area (LGA)-level coverage of eight essential maternal and child health services in 2018 
by state. Orange dots mark the mean coverage within each state. Grey dots show service coverage for each LGA within the 
state. The distribution of these grey dots is summarised by a violin plot.
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Trends in essential MCH service coverage
The mean LGA-level service coverage for essential MCH 
services increased during the period from 2003 to 2018. 
The annual mean increase in service coverage was higher 
for third Penta (1.4%), first Penta (1.3%), BCG (1.3%), 
and third OPV (1.2%), and lower for measles vaccination 
(0.7%), first OPV (0.7%), facility-based delivery (0.6%) 
and ANC (0.5%). However, trends in LGA-level essential 
MCH service coverage between 2003 and 2018 varied 
by type of service and by state. Although most LGAs are 
trending towards better essential MCH service coverage, 
some are stagnating or even decreasing over time.

Trends in mean MCH coverage for urban and rural 
LGAs are shown in online supplemental file 8. On average, 
service coverage in both urban and rural areas increased 
over time. DiD estimates of the change in the urban-rural 
gap find no significant evidence that this gap has changed 
over time for any service. Specifically, between 2003 and 
2018, the gap between urban and rural areas changed 
by −2.3% (95% CI −14.3% to 10.6%) for ANC, −3.8% 
(−16.2% to 8.6%) for facility-based delivery, 7.6% (95% 
CI −22.9% to 7.0%) for BCG, −6.4% (−19.3% to 6.3%) for 
first pentavalent, −2.6% (−17.2% to 11.9%) for first OPV 
and −1.8% (−13.5% to 9.5%) for measles vaccination. In 
no case was the DiD statistically significant.

Priority LGAs with lower coverage of essential MCH services
Figure  3 is an LGA-level bivariate choropleth map that 
two-dimensionally shows service coverage of childhood 
vaccinations (BCG, first and third DTP/pentavalent 
(Penta) and OPV, and first dose of measles) and maternal 
health (ANC and facility-based delivery). Coverage level 
was classified by tertile (ie, higher 33%, middle 33% and 
lower 33%). The map indicates that a majority of LGAs 
located in northern part of the country had lower child-
hood vaccination and maternal health service coverage, 
excepting some urban LGAs which had higher coverage 
for either or both types of services. The southwest, 
including districts in Ogun and Oyo states, had higher 
maternal health service coverage and lower childhood 
vaccination coverage. In contrast, the southeastern and 
central areas of the country had lower maternal service 
coverage and higher childhood vaccination coverage. 
Finally, those states in which 80% of LGAs were catego-
rised as high coverage for both types of services. The 
dark purple areas in figure 3, comprising Abia, Anambra, 
Edo, Ekiti, Enugu, Imo, Lagos and Osun, can be found 
in the southern part of Nigeria and had relatively greater 
population sizes and density than other areas. Online 
supplemental file 9 provides LGA-level mean coverage of 
childhood vaccinations and maternal health services as of 
2018, by state.

DISCUSSION
The global movement for UHC highlights the impor-
tance of identifying subnational inequities in health 
service coverage in order to better understand the 
characteristics of underserved populations and thereby 
correct maldistribution of health resources and services. 
This movement has led researchers to conduct studies 
on the heterogeneity of health service coverage within 
and between subnational levels and to identify the most 
vulnerable areas for priority setting. Responding to this 
need, this study estimated grid-level coverage of essen-
tial MCH services in Nigeria using publicly available 
geographic datasets and comparing the performance of 
two statistical approaches (GAMs and GB).

Cross-validation performance confirms the strong 
predictive power of the final models of essential service 
coverage, with the exception of treatments for child-
hood illnesses. MSE and MBE values of the final model 
for measles vaccination were slightly better than those 
reported in an earlier study on grid-level coverage esti-
mates of measles vaccination that employed Bayesian 
multivariate spatial-temporal modelling.2 GAM with a 
shrinkage approach might be applied to a multicounty 
or global model, to simultaneously account for differing 
drivers and non-linear relationships. GAM estimation 
is also less computationally intensive than GB models, 
particularly to find the best set of hyper-parameters.

The importance of each feature for predicting MCH 
service coverage, shown in online supplemental file 5, 
varied by MCH service types. This suggests that further 

Figure 3  Service coverage distribution of essential maternal 
health services (antenatal care and facility-based delivery) 
and immunisation services in 2018 as a bivariate choropleth 
map. Mixtures of the colours red and blue indicate coverage 
levels in each local government area. Areas with high levels 
of maternal service coverage but low levels of immunisation 
coverage are shown in red. Areas with high levels of 
immunisation coverage, but low levels of maternal service 
coverage are shown in blue. Areas with similar levels of 
coverage across both services are shown in shades of purple 
ranging from lilac (low coverage of both services) to plum 
(high coverage of both services).
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study may need to select an appropriate set of geospa-
tial covariates for predicting coverage of specific health 
services. Additionally, the results for some predictors 
should be interpreted with caution. For example, educa-
tion attainment is a model-based estimate generated 
using geospatial covariates such as night light, access to 
roads, population and aridity. The consistent importance 
of male and female education attainment in predicting 
coverage in GB models might therefore reflect the influ-
ence of the other geospatial covariates that were used to 
generate education status estimates, rather than educa-
tional status itself.

One avenue for increasing predictive power is to use 
health administrative data on essential MCH service util-
isations reported from health facilities. Almost all coun-
tries have health management information systems that 
store time-series data on the delivery of key health services 
from public and private health facilities. For example, 
Nigeria launched the web-based software District Health 
Information System version 2 (DHIS2) in 2010. Child-
hood vaccination data have been collected on a monthly 
basis since 2014.41 National-level health administrative 
data were used for estimating national coverage of child-
hood vaccination services by the WHO and UNICEF42 
and by a recent publication in the Lancet.43 In addition, 
DHIS2 contains the aggregated count of clients/patients 
who receive respective health services at the lowest 
administrative level every month. Using these lower-
level health administrative data may increase predictive 
power. However, the quality of health administrative data 
from health facilities is questionable in many countries at 
present.44

This study clarifies that national and subnational 
MCH service coverage measures mask significant spatial 
heterogeneity within Nigeria, which may result in poor 
decision-making on geographical prioritisation at the 
LGA and local levels. Likewise, inequities in MCH service 
coverage between LGAs varied by state and type of service. 
However, the distribution and use of health resources 
in Nigeria remain suboptimal in terms of demography, 
disease burden and pre-existing endowments of health 
resources.45 46 The high-resolution maps generated by this 
study could be an input into the decision-making process 
for better geographical prioritisation of health resources. 
Maps could help identify LGAs that may be significantly 
lagging behind in multiple indicators, thus requiring 
broad-scale interventions. In addition, the granular-level 
estimate may illuminate pockets of underservice within 
LGAs, thereby offer a more nuanced understanding that 
would otherwise be masked in broader LGA-level data. 
To operationalise the use of our high-resolution maps in 
decision-making, a collaborative framework with govern-
ment health agencies is essential. We recommend the 
development of an interactive, user-friendly interface 
for real-time exploration of data, coupled with regular 
updates to maintain relevance. Training sessions for local 
health officials can further facilitate the accurate inter-
pretation and application of these maps. Pilot studies may 

serve as an initial platform to assess the utility and effec-
tiveness of this approach in guiding resource allocation 
and healthcare planning.

Whereas prioritising based on a single indicator may 
make sense for achieving specific goals, such as the 
Immunization Agenda 2030, broader agendas, such as 
the Sustainable Development Goals, require prioritisa-
tion based on multiple indicators. Accordingly, we recom-
mend that criteria for prioritising geographic locations 
should not rely on a single indicator of coverage, but 
rather consider coverage rates for multiple health services 
in order to ensure optimal provision. In particular, the 
study highlights within-locality differences in coverage 
of childhood vaccinations and maternal health services, 
with some localities performing markedly better in one 
area or the other.

According to the Lancet Commissions,46 Nigeria needs 
to distribute available health resources more equitably 
through increasing resource management and strategic 
purchasing capacities. Routinely updated high-resolution 
maps could also support micro-planning of supplemen-
tary activities such as outreach services and childhood 
vaccination, especially if such mapping is connected with 
a health information management system such as DHIS2. 
Specifically, mapping can help estimate the number of 
individuals in need of services at the community level and 
thereby inform budgeting and resource allocation.

There are several limitations to this study. Our 
modelling approach is less applicable to estimating the 
coverage of health services like treatments of childhood 
illnesses, which are more associated with individual and 
contextual characteristics than spatial covariates.47–49 
Moreover, several other factors likely contribute to the 
models’ weaker performance in this area. For instance, 
treatment-seeking behaviours for childhood illnesses can 
be highly variable, influenced by cultural and religious 
beliefs, gender dynamics and financial constraints. Addi-
tionally, health awareness and severity and frequency of 
disease can vary substantially, making it challenging to 
predict coverage effectively. These complexities are not 
easily captured by spatial covariates alone, resulting in 
reduced model performance for this service. Inequalities 
between relatively affluent urban areas and their adjacent 
peri-urban areas suffering higher poverty rates were not 
captured in the maps we created due to limitations of 
the available input data. Moreover, our study investigated 
inequality not by income, educational status, and other 
factors, but by geospatial conditions only. Due to the data 
availability issue, we used some temporal mismatched 
data in our modelling. While the temporal mismatch 
is not ideal, the alternative of excluding these variables 
could result in a less robust model, losing potentially 
significant predictors.

CONCLUSION
This study visualised significant geographical inequi-
ties of essential MCH service utilisations in Nigeria. 
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The high-resolution maps herein provide health policy-
makers/planners with guidance for geographic prioriti-
sation of specific MCH services. These estimates serve as 
a resource to further develop implementation strategies 
for maximising limited resources. Strengthening routine 
MCH service delivery and its supplementary activities 
should be implemented in the priority areas with low 
coverage of essential MCH services.
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